The latest issue of Scientific Computing has a great article from some NASA researchers on analyzing and visualizing airflow around landing gear, in hopes of redesigning them to reduce vibration and “aeroacoustic” effects (eg, Loud rumbling).  If you see their “Digital magazine” Version you can see some movies of their visualizations.

To generate the flow animations presented here required saving a small portion (12,000 snapshots or time steps) of the flow simulation record. With each snapshot resulting in a file size on the order of 4 to 5 gigabytes, the total time record saved is in excess of 50 to 70 terabytes of data. Although such an aggregated file size is not excessively large by today’s standards, it is still too large for routine visualization of the results. The push toward much larger simulations (a nose gear computation on a grid twice as large as the current grid is ongoing) precludes relying on traditional methods for post-processing of CFD data; that is, saving the volumetric information at each time step for analysis at a later time, as these are highly inefficient and no longer practical. Such large datasets demand concurrent real-time simulation, analysis and visualization of the flow field without the need to save countless terabytes of information that would soon tax the storage capacity of even the largest supercomputers.

Scientific visualization of high-fidelity, large-scale flow simulations such as these has become an indispensable tool for providing global insights and knowledge that enable the development of viable engineering solutions to pressing environmental issues affecting the public good. The landing gear simulations, for example, together with those from other disciplines relevant to aircraft design, will soon be used to help develop a new breed of subsonic aircraft that will not only reduce noise pollution, but will burn less fuel and produce fewer harmful emissions — all to improve life on our planet.

via High-Fidelity Simulation of Landing Gear Noise.